@prefix dcterms: .
@prefix this: .
@prefix sub: .
@prefix beldoc: .
@prefix rdfs: .
@prefix rdf: .
@prefix xsd: .
@prefix dce: .
@prefix pav: .
@prefix np: .
@prefix belv: .
@prefix prov: .
@prefix go: .
@prefix Protein: .
@prefix mgi: .
@prefix geneProductOf: .
@prefix hasAgent: .
@prefix species: .
@prefix occursIn: .
@prefix pubmed: .
@prefix orcid: .
sub:Head {
this: np:hasAssertion sub:assertion;
np:hasProvenance sub:provenance;
np:hasPublicationInfo sub:pubinfo;
a np:Nanopublication .
}
sub:assertion {
sub:_1 hasAgent: sub:_2;
a go:0003824 .
sub:_2 geneProductOf: mgi:104887;
a Protein: .
sub:_3 occursIn: species:10090;
rdf:object go:0006116;
rdf:predicate belv:decreases;
rdf:subject sub:_1;
a rdf:Statement .
sub:assertion rdfs:label "cat(p(MGI:Gpx1)) -| bp(GO:\"NADH oxidation\")" .
}
sub:provenance {
beldoc: dce:description "Approximately 61,000 statements.";
dce:rights "Copyright (c) 2011-2012, Selventa. All rights reserved.";
dce:title "BEL Framework Large Corpus Document";
pav:authoredBy sub:_5;
pav:version "1.4" .
sub:_4 prov:value "To determine the in vivo role of cellular glutathione peroxidase (E.C.1.11.1.9, GPX1), we challenged the GPX1 knockout [GPX1(-/-)], the GPX1 overexpressing [GPX1(+)], and their respective wild-type (WT) mice of different Se and vitamin E status with acute oxidative stress. After these mice were injected with pro-oxidants paraquat or diquat at 12 to 125 mg/kg of body weight, their survival rate and time were a function of their GPX1 activity levels. The GPX1 protection was associated with attenuation of NADPH and NADH oxidation, protein carbonyl and F(2)-isoprostanes formation, and alanine transaminase release in various tissues, and was irreplaceable by high levels of dietary vitamin E or other selenoproteins. The GPX1 expression was also protective against moderate oxidative stress induced by low levels of paraquat or diquat, particularly in the Se-deficient mice. Alteration of GPX1 expression showed no impact on the expression of other selenoproteins and antioxidant enzymes in unstressed mice. Total Se content in liver of the Se-adequate GPX1(-/-) mice was reduced by 60% the WT controls. In conclusion, normal expression of GPX1 is essential and overexpression of GPX1 is beneficial to protect mice against acute oxidative stress.";
prov:wasQuotedFrom pubmed:11568445 .
sub:_5 rdfs:label "Selventa" .
sub:assertion prov:hadPrimarySource pubmed:11568445;
prov:wasDerivedFrom beldoc:, sub:_4 .
}
sub:pubinfo {
this: dcterms:created "2014-07-03T14:29:58.279+02:00"^^xsd:dateTime;
pav:createdBy orcid:0000-0001-6818-334X, orcid:0000-0002-1267-0234 .
}