@prefix this: . @prefix sub: . @prefix beldoc: . @prefix rdfs: . @prefix rdf: . @prefix xsd: . @prefix dct: . @prefix dce: . @prefix pav: . @prefix np: . @prefix belv: . @prefix prov: . @prefix Protein: . @prefix hgnc: . @prefix geneProductOf: . @prefix go: . @prefix nch: . @prefix ProteinComplex: . @prefix hasAgent: . @prefix species: . @prefix occursIn: . @prefix pubmed: . @prefix orcid: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { nch:Nfkb%20Complex a ProteinComplex: . sub:_1 geneProductOf: hgnc:11892; a Protein: . sub:_2 hasAgent: nch:Nfkb%20Complex; a go:0042789 . sub:_3 occursIn: species:9606; rdf:object sub:_2; rdf:predicate belv:increases; rdf:subject sub:_1; a rdf:Statement . sub:assertion rdfs:label "p(HGNC:TNF) -> tscript(complex(NCH:\"Nfkb Complex\"))" . } sub:provenance { beldoc: dce:description "Approximately 61,000 statements."; dce:rights "Copyright (c) 2011-2012, Selventa. All rights reserved."; dce:title "BEL Framework Large Corpus Document"; pav:authoredBy sub:_5; pav:version "1.4" . sub:_4 prov:value "Nuclear factor-kappaB (NF-kappaB) is a transcription factor critical for key cellular processes, including immune response, apoptosis, and cell cycle progression. A yeast two-hybrid screening, using the Rel homology domain (RHD) of the p65 subunit (RelA) of NF-kappaB as bait, led to the isolation of PIAS3, previously identified as a specific inhibitor of STAT3. We show that PIAS3 can directly associate with p65 using an in vitro pull-down and in vivo coimmunoprecipitation assays. When overexpressed, PIAS3 inhibits NF-kappaB-dependent transcription induced by treatment with tumor necrosis factor alpha (TNF-alpha) or interleukin-1beta or by overexpression of TNF family receptors such as RANK, TNFR1, and CD30 or signal transducers of TNF receptor-associated factors (TRAFs), including TRAF2, TRAF5, and TRAF6. Downregulation of PIAS3 by RNA interference reverses its effect on TNF-alpha-mediated NF-kappaB activation. We found that an N-terminal region of PIAS3 is necessary for both the interaction with p65 and the transcriptional suppression activity. In addition, we found that an LXXLL coregulator signature motif located within the N-terminal region of PIAS3 is the minimal requirement for the interaction with p65. Furthermore, we demonstrate that PIAS3 interferes with p65 binding to the CBP coactivator, thereby resulting in a decreased NF-kappaB-dependent transcription. Taken together, these data suggest that PIAS3 may function in vivo as a modulator in suppressing the transcriptional activity of p65."; prov:wasQuotedFrom pubmed:15140884 . sub:_5 rdfs:label "Selventa" . sub:assertion prov:hadPrimarySource pubmed:15140884; prov:wasDerivedFrom beldoc:, sub:_4 . } sub:pubinfo { this: dct:created "2014-07-03T14:30:23.380+02:00"^^xsd:dateTime; pav:createdBy orcid:0000-0001-6818-334X, orcid:0000-0002-1267-0234 . }