@prefix this: . @prefix sub: . @prefix beldoc: . @prefix rdfs: . @prefix rdf: . @prefix xsd: . @prefix dct: . @prefix dce: . @prefix pav: . @prefix np: . @prefix belv: . @prefix prov: . @prefix schem: . @prefix RNA: . @prefix mgi: . @prefix geneProductOf: . @prefix mesh: . @prefix occursIn: . @prefix species: . @prefix pubmed: . @prefix orcid: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { sub:_1 geneProductOf: mgi:95295; a RNA: . sub:_2 occursIn: mesh:D005347, species:10090; rdf:object sub:_1; rdf:predicate belv:increases; rdf:subject schem:serum%20insulin; a rdf:Statement . sub:assertion rdfs:label "a(SCHEM:\"serum insulin\") -> r(MGI:Egr1)" . } sub:provenance { beldoc: dce:description "Approximately 61,000 statements."; dce:rights "Copyright (c) 2011-2012, Selventa. All rights reserved."; dce:title "BEL Framework Large Corpus Document"; pav:authoredBy sub:_4; pav:version "1.4" . sub:_3 prov:value "The human insulin receptor (IR) exists in two isoforms (IR-A and IR-B). IR-A is a short isoform, generated by the skipping of exon 11, a small exon encoding for 12 amino acid residues at the carboxyl terminus of the IR alpha-subunit. Recently, we found that IR-A is the predominant isoform in fetal tissues and malignant cells and binds with a high affinity not only insulin but also insulin-like growth factor-II (IGF-II). To investigate whether the activation of IR-A by the two ligands differentially activate post-receptor molecular mechanisms, we studied gene expression in response to IR-A activation by either insulin or IGF-II, using microarray technology. To avoid the interfering effect of the IGF-IR, IGF-II binding to the IR-A was studied in IGF-IR-deficient murine fibroblasts (R- cells) transfected with the human IR-A cDNA (R-/IR-A cells). Gene expression was studied at 0.5, 3, and 8 h. We found that 214 transcripts were similarly regulated by insulin and IGF-II, whereas 45 genes were differentially transcribed. Eighteen of these differentially regulated genes were responsive to only one of the two ligands (12 to insulin and 6 to IGF-II). Twenty-seven transcripts were regulated by both insulin and IGF-II, but a significant difference between the two ligands was present at least in one time point. Interestingly, IGF-II was a more potent and/or persistent regulator than insulin for these genes. Results were validated by measuring the expression of 12 genes by quantitative real-time reverse transcriptase-PCR. In conclusion, we show that insulin and IGF-II, acting via the same receptor, may differentially affect gene expression in cells. These studies provide a molecular basis for understanding some of the biological differences between the two ligands and may help to clarify the biological role of IR-A in embryonic/fetal growth and the selective biological advantage that malignant cells producing IGF-II may acquire via IR-A overexpression."; prov:wasQuotedFrom pubmed:12881524 . sub:_4 rdfs:label "Selventa" . sub:assertion prov:hadPrimarySource pubmed:12881524; prov:wasDerivedFrom beldoc:, sub:_3 . } sub:pubinfo { this: dct:created "2014-07-03T14:30:14.956+02:00"^^xsd:dateTime; pav:createdBy orcid:0000-0001-6818-334X, orcid:0000-0002-1267-0234 . }