@prefix this: . @prefix sub: . @prefix beldoc: . @prefix rdfs: . @prefix rdf: . @prefix xsd: . @prefix dct: . @prefix dce: . @prefix pav: . @prefix np: . @prefix belv: . @prefix prov: . @prefix Protein: . @prefix mgi: . @prefix geneProductOf: . @prefix RNA: . @prefix mesh: . @prefix occursIn: . @prefix species: . @prefix pubmed: . @prefix orcid: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { sub:_1 geneProductOf: mgi:1309468; a Protein: . sub:_2 geneProductOf: mgi:1097717; a RNA: . sub:_3 occursIn: mesh:D006321, species:10090; rdf:object sub:_2; rdf:predicate belv:increases; rdf:subject sub:_1; a rdf:Statement . sub:assertion rdfs:label "p(MGI:Casq1) -> r(MGI:Ankrd1)" . } sub:provenance { beldoc: dce:description "Approximately 61,000 statements."; dce:rights "Copyright (c) 2011-2012, Selventa. All rights reserved."; dce:title "BEL Framework Large Corpus Document"; pav:authoredBy sub:_5; pav:version "1.4" . sub:_4 prov:value "Calsequestrin (CSQ) is the major Ca2+ binding protein of the cardiac sarcoplasmic reticulum (SR). Transgenic mice overexpressing CSQ at the age of 7 weeks exhibit concentric cardiac hypertrophy, and by 13 weeks the condition progresses to dilated cardiomyopathy. The present study used a differential display analysis to identify genes whose expressions are modulated in the CSQ-overexpressing mouse hearts to provide information on the mechanism of transition from concentric cardiac hypertrophy to failure. Cardiac ankyrin repeat protein (CARP), glutathione peroxidase (Gpx1), and genes which participate in the formation of extracellular matrix including decorin, TSC-36, Magp2, Osf2, and SPARC are upregulated in CSQ mouse hearts at 7 and 13 weeks of age compared to those of non-transgenic littermates. In addition, two novel genes without sequence similarities to any known genes are upregulated in CSQ-overexpressing mouse hearts. Several genes are downregulated at 13 weeks, including SR Ca2+-ATPase (SERCA2) and adenine nucleotide translocase 1 (Ant1) genes. Further, a functionally yet unknown gene (NM_026586) previously identified in the mouse wolffian duct is dramatically downregulated in CSQ mice with dilated hearts. Thus, CARP, Gpx1, and genes encoding extracellular matrix proteins may participate in the development of cardiac hypertrophy and fibrosis, and changes in SERCA2, Ant1, and NM_026586 mRNA expression may be involved in transition from concentric to dilated cardiac hypertrophy."; prov:wasQuotedFrom pubmed:12127059 . sub:_5 rdfs:label "Selventa" . sub:assertion prov:hadPrimarySource pubmed:12127059; prov:wasDerivedFrom beldoc:, sub:_4 . } sub:pubinfo { this: dct:created "2014-07-03T14:30:04.474+02:00"^^xsd:dateTime; pav:createdBy orcid:0000-0001-6818-334X, orcid:0000-0002-1267-0234 . }