@prefix this: . @prefix sub: . @prefix beldoc: . @prefix rdfs: . @prefix rdf: . @prefix xsd: . @prefix dct: . @prefix dce: . @prefix pav: . @prefix np: . @prefix belv: . @prefix prov: . @prefix go: . @prefix chebi: . @prefix species: . @prefix occursIn: . @prefix mesh: . @prefix pubmed: . @prefix orcid: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { sub:_1 occursIn: mesh:D008264, species:9606; rdf:object chebi:26523; rdf:predicate belv:increases; rdf:subject go:0042116; a rdf:Statement . sub:assertion rdfs:label "bp(GO:\"macrophage activation\") -> a(CHEBI:\"reactive oxygen species\")" . } sub:provenance { beldoc: dce:description "Approximately 61,000 statements."; dce:rights "Copyright (c) 2011-2012, Selventa. All rights reserved."; dce:title "BEL Framework Large Corpus Document"; pav:authoredBy sub:_3; pav:version "1.4" . sub:_2 prov:value "DBP has been directly implicated in the activation of macrophages. Activated macrophages develop the capacity for specialized tasks such as chemotaxis, phagocytosis and the lysis of intracellular parasites, as well as destruction of tumor cells. Lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) injected into the mouse peritoneum normally activate macrophages to generate reactive oxygen intermediates (ROIs) and to ingest cellular debris during the inflammatory response."; prov:wasQuotedFrom pubmed:10996527 . sub:_3 rdfs:label "Selventa" . sub:assertion prov:hadPrimarySource pubmed:10996527; prov:wasDerivedFrom beldoc:, sub:_2 . } sub:pubinfo { this: dct:created "2014-07-03T14:29:52.433+02:00"^^xsd:dateTime; pav:createdBy orcid:0000-0001-6818-334X, orcid:0000-0002-1267-0234 . }